
High Dimensional Direct Rendering of Time-Varying Volumetric Data

Jonathan Woodring∗ Chaoli Wang†

The Ohio State University

Han-Wei Shen‡

Abstract

We present an alternative method for viewing time-varying volu-
metric data. We consider such data as a four-dimensional data field,
rather than considering space and time as separate entities. If we
treat the data in this manner, we can apply high dimensional slicing
and projection techniques to generate an image hyperplane. The
user is provided with an intuitive user interface to specify arbitrary
hyperplanes in 4D, which can be displayed with standard volume
rendering techniques. From the volume specification, we are able
to extract arbitrary hyperslices, combine slices together into a hy-
perprojection volume, or apply a 4D raycasting method to generate
the same results. In combination with appropriate integration op-
erators and transfer functions, we are able to extract and present
different space-time features to the user.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction techniques

Keywords: time-varying data, hyperslice, hyperprojection, inte-
gration operator, transfer function, raycasting, volume rendering

1 Introduction

When analyzing a time sequential event, we are likely to think of
it as single frames of events in our mind’s eye or how the event
progresses in time as we imagine it. Artists, photographers, and
the early pioneers of cinematography explored the co-mingling of
space and time. Etienne-Jules Marey’s chronophotographic image
of a figure jumping off a chair, seen in Figure 1(a), and Marcel
Duchamp’s painting, Nude Descending a Staircase (No. 2), seen in
Figure 1(b), are two such examples. Culminating in the late 19th
and early 20th century, works like these were a result from the ag-
gregation of influence from the birth of cinema, the works of Marey,
Muybridge and Eakins, Futurism and Cubism art styles, and the re-
definition of space and time by scientists and philosophers. From
this imagery, we are able understand the motion and flow of the
figures moving over time.
Traditionally, we have two methods of visualizing time series

data. We can take a snapshot of the data, by taking a particular
time step in a time series and visualizing that volume. It is just a

∗e-mail:woodring@cis.ohio-state.edu
†e-mail:wangcha@cis.ohio-state.edu
‡e-mail:hwshen@cis.ohio-state.edu

(a) (b)

Figure 1: Depicting time evolution in photography and art. (a)
Jumping off a Chair, Etienne-Jules Marey. (b) Nude Descending
a Staircase (No. 2), Marcel Duchamp.

single frame from a sequence of images, and like a 2D slice from
a 3D volume, while useful, it is out of context from the entire time
sequence. We can also generate an animation from the time series
data. This is also useful, but we have to rely on our memory and
cognitive abilities to tie together spatio-temporal relationships. In-
spired by the works of Duchamp and his peers, we seek to visualize
time-varying volumetric data in a different manner.
What we provide is an alternative method to viewing time evolv-

ing data. Rather than considering space and time as separate com-
ponents, the data are treated as a four-dimensional data field. In
this manner, we can do high dimensional direct rendering of the
data. In the first section following the related work, we will dis-
cuss our method to perform projection in four dimensions. This is
conceptually broken into two parts, the specification of a image hy-
perplane and the parallel projection of hyperplanes. When we refer
to the image hyperplane, we are referring to a 3D hyperplane in 4D
space which we project to, similar to how we project 3D space to
a 2D plane to visualize volumes. The result of our technique gen-
erates a volume that is the projection of hyperplanes along a 4D
projection vector, which can be rendered using traditional volume
rendering techniques. Then, we will describe different categories
of hyperplanes and how to interpret the projection of each type of
the hyperplanes. The interpretation of the projection is dependent
upon the integration operator and transfer functions that we use in
4D projection. From these operators, we are able to generate a 4D
hyperprojected image volume that exposes different space-time re-
lationships to the user.

2 Related Work

Previous work on time-varying visualization that relates to our work
primarily focuses on visualization of higher dimensional objects,
time-varying feature tracking and transfer function design.



Already in the 19th century, mathematicians had fashioned mod-
els to show the sequence of hypercube slices in various directions
[Banchoff 1990]. Nowadays, interactive computer graphics puts us
into direct visual contact with slices of 4D cubes. It is up to us
to learn how to interpret these images, and to try to overcome the
limitation of our own 3D perspective[Cohen 2000]. Over the past
decade, many approaches have been proposed to visualize higher
dimensional objects. Hanson, Heng and Cross [Hanson and Heng
1992a; Hanson and Heng 1992b; Hanson and Cross 1993] intro-
duced a general technique as well as an interactive system for visu-
alizing surfaces and volumes embedded in four dimensions. In their
method, 3D scalar fields were treated as elevation maps in four di-
mensions in the same way 2D scalar field could be viewed as 3D
terrains. A 4D illumination model was developed where 3D Phong
lighting model was extended to 4D, with tetrahedra as the basic ren-
dering primitives. Special care was taken to enhance objects with
renderable properties so that they are renderable in the embedded
dimension.
The Hyperslice approach [van Wijk and van Liere 1993] pro-

posed by van Wijk and van Liere uses a matrix of orthogonal
2D slices as the basic visual representation of a multi-dimensional
function. Although this approach enables the user to view multi-
dimensional space in a simple and intuitive way, it could be difficult
to reconstruct a complete mental image of the data from the separate
multiple slices for higher dimensions because at most two dimen-
sions are considered for a single slice. Bajaj et al.[Bajaj et al. 1998]
developed an interface that provides “global views” of scalar fields
independent of the dimension of their embedded space and gen-
eralized the object space splatting technique into a hyper-volume
splatting method. Texture mapping hardware is utilized to directly
render n-dimensional views of the global scalar field. In essence,
visualization of high dimensional objects was the primary interest
for those methods, therefore no explicit temporal feature tracking
was attempted.
To track time-varying features, researchers have proposed vari-

ous methods to establish correspondence between data in different
time steps. Silver and Wang used spatial overlap criteria [Silver
and Wang 1997] to track time-varying interval volumes evolving
in time for structured and unstructured data. Important temporal
events such as bifurcation can also be detected [Samtaney et al.
1994]. Banks and Singer [Bank and Singer 1995] used a predictor-
corrector method to reconstruct and track vortex tubes from turbu-
lent time-dependent flows. Reinders et al.[Reinders et al. 2001]
designed the event graph viewer in a linked combination with a
3D feature viewer to assist visualization and exploration of time-
dependent data.
Research on transfer function design has been mostly focused

on time-invariant volume data. Kindlmann et al.[Kindlmann and
Durkin 1998] proposed a semi-automatic algorithm to detect the
material boundaries based on first and second derivatives of the
scalar data. A function that maps from data values to the dis-
tances to the boundaries is used to assist opacity assignments. Kniss
et al.[Kniss et al. 2001; Kniss et al. 2002] later followed up the
work in [Kindlmann and Durkin 1998] with an intuitive user inter-
face and introduced the concept of dual-domain interaction. For
time-varying data, Jankun-Kelly and Ma [Jankun-Kelly and Ma
2001] proposed a method to reduce the number of transfer functions
across the time sequence by merging the coherent segments. Mul-
tiple transfer functions for a time-varying data are not frequently
used, but could be effective for certain scenarios.
The VideoCube [Microsoft Research Graphics Group 2000] ap-

plication developed at Microsoft allows one to load an AVI file as a
volume, and play back the movie sampling space and time in differ-
ent ways. A single cutting plane is provided for interactively view-
ing single space-time slices of the video. A more recent work on
Chronovolumes by Woodring and Shen [Woodring and Shen 2003]

proposed a way that integrates time-varying volume data through
time and produces a single view that captures the essence of multi-
ple time steps in a sequence. In this paper, we generalize their idea
by treating time-varying data as a four-dimensional data field and
allow users to integrate the data along arbitrary directions in space
and time using high dimensional slicing and projection techniques.

3 Projection in Four Dimensions

Our goal is to understand spatio-temporal characteristics of time-
varying volumetric data using 4D projection. To perform projection
in four dimensions, we approach the concept by specification of
hyperplanes in 4D space and projection of these hyperplanes. The
concept of slicing volumes can be readily extended to 4D fields,
which is sometimes called hyperslicing. Though there is a concep-
tual similarity between 3D slicing and 4D hyperslicing, it is less
intuitive to specify the location and orientation of a hyperslice in
4D space. Given that, we have devised an improved method for
interactive specification of arbitrary hyperslices.
Based on our hyperslicing results, we go one step further by per-

forming projection of the hyperplanes. We will discuss the different
categories of hyperslices, and the projection that is performed. How
we generate interpretable images is dependent upon the integration
operators and transfer functions that we use to project in 4D space.
With the operators that we have designed, we are able to generate
images that are easy to interpret and enable users to understand the
spatio-temporal characteristics of the time-varying volumetric data.

3.1 Arbitrary Hyperslicing Specification

A hyperplane is a n−1 subspace of a n-dimensional space. Given
that we are working with 4D spaces, space and time, hereafter when
we refer to a hyperplane, we are speaking of a 3D subspace of a 4D
space. A 4D hyperplane can be defined by equation in the coordi-
nate form:

ax+by+ cz+dt+ e= 0 (1)

Although it is possible for the user to provide the numerical values
of the coefficients (a,b,c,d,e) for the hyperplane in Equation 1,
compared to 3D slicing, specifying a hyperplane to slice a 4D vol-
ume is much more difficult due to our limited ability to visualize
objects in four dimensions. There are other forms for the hyper-
plane, such as the vector form n · (P−P0) = 0, which allows the
user to specify position and orientation, but it is still difficult for the
user to conceptualize what is being sliced. In the following, we de-
scribe our approach to address this issue with the coordinate form
hyperplane representation.
In Equation 1, if we fix the time, for instance let t = τ , then the

hyperplane equation reduces to ax+ by+ cz+C = 0, where C =
dτ+e and is constant. This is a 2D plane in 3D space at a particular
instance in time, which can be easily visualized. Based on this idea,
given a hyperplane equation, we can compute as well as visualize
the hyperslice by computing the intersection of the hyperplane with
the underlying time-varying volume at different time steps, and then
stack up the resulting 2D slices to form a volume. This is the result
of hyperslicing. Two of the local axes of the hyperslice volume span
a plane that is orthogonal to the vector (a,b,c), and the other axis
is parallel to the time axis t. Since the hyperslice is a volume, we
can visualize this volume using regular volume rendering methods
in 3D space.
The above algorithm for computing hyperslice provides a intu-

itive way to help the user specify and visualize a hyperplane, as seen
in Figure 2. We can separate the process of specifying a hyperplane
into two steps. In the first step, the user specifies the orientation
of the intersection plane between the hyperslice and the underlying



(a, b, c)

t0 t1

(a) (b)

Figure 2: (a) shows the conceptual notion presented to the user
on how to specify a hyperslice. The user determines (a,b,c) by
setting the orientation for a 2D slice of a time step. d and e is
determined by the offset of each slice in space over time. (b) shows
the interface in the software. Three time steps are shown, where
blue is the slice taken at the first time step, green is the second, and
red is the third. All the slices through time are stacked together to
form the hyperslice.

volume in spatial domain. In the second step, the user specifies how
the intersection plane will move in time along its normal direction.
In Equation 1, the first three coefficients, a,b and c, determine the
orientation of the intersection plane in space. The coefficients d
and e, as well as the value of the time variable t, decide the off-
sets of the intersection plane at different time steps. For instance,
when t = 0, the intersection of the hyperplane with the volume has
the form ax+by+ cz+ e= 0. And when t = 1, the intersection of
the hyperslice with the volume becomes ax+ by+ cz+ d+ e = 0,
which indicates that the slicing plane moves along the plane nor-
mal (a,b,c) in spatial domain by d/

√
a2+b2+ c2 for every time

step, assuming a,b, and c are not all equal to zero. A hyperplane
can be illustrated in this way that shows the spatial boundaries by
polygons, and the temporal boundaries by colors.

3.2 Hyperplane Projection

When visualizing a time-varying volume as 4D space, we extend
parallel projection in 3D to 4D projection. In 3D parallel projection,
the 2D image plane moves along its normal direction, subsampling
and integrating the underlying 3D volume. In four dimensions, we
have a 3D image plane that moves along its normal direction, sub-
sampling and integrating 4D space. Thus, the result of the 4D pro-
jection is a volume where each voxel in the resulting volume is an
integration of space-time samples along the hyperplane normal. To
visualize this hyperprojection volume, standard volume rendering
techniques can be used to project the volume down to a 2D image
plane.
The idea of 4D parallel projection can be implemented based on

the hyperslicing algorithm described in the previous section. As-
suming the image volume is initially set by Equation 1, we can
compute a sequence of hyperslices by moving the image volume
along its normal direction (a,b,c,d) in 4D space. This is equiva-
lent to updating the hyperplane equation by adding a small constant
at every sampling step. That is, for the ith sampling hyperplane,
Si = ax+ by+ cz+ dt + e+ ∆ei. With the sequence of properly
aligned hyperslices, we can integrate the voxels from the hyper-
slice sequence to compute the projection result. To ensure a proper
sampling rate, ∆e should be small enough so that the distance be-
tween two consecutive subsamples is less than or equal to one voxel
in length. In four dimensions, the diagonal of a hypercube with
sides of length 1, corresponding to an even spacing of samples in
4D space, has a length of 2. Half this distance is 1, so the proper
sampling rate to get influence from all voxels would be ∆e = 1,
assuming that (a,b,c,d) is normalized.

4 Interpretation of 4D Projection

One challenge that remains is the practical use of the projection
of 4D space and how to interpret the resulting images. Half of
the interpretation depends upon the form of the image hyperplane
equation. The other half of the interpretation depends on what in-
tegration method is used to project four dimensions down to three
dimensions. Useful information promoting the understanding of
spatial and temporal behaviors of the data can be derived if suit-
able integration operators are used to integrate when hyperproject-
ing. In the following, we first discuss how to interpret the meaning
of 4D volume projection based on the hyperplane equation, and
then describe the integration operators. We have used several data
sets from computational fluid dynamics to show examples of our
results. These include the jet, shockwave, delta wing, and vortex
time-varying data sets, using 10 time steps in our examples.

4.1 Hyperplane Interpretation

We classify a hyperplane in Equation 1 into three different families.
Each of the families can be identified based on the values of the
plane coefficients, and has a unique meaning when projecting the
4D space onto the 3D hyperplane:

(1) d = 0, i.e., the hyperplane has the form ax+by+ cz+ e= 0;
(2) d ̸= 0, a= b= c= 0, i.e., the hyperplane has the form dt+e=

0;
(3) d ̸= 0, a∨b∨ c ̸= 0.

(1) d = 0. When d = 0, the hyperplane equation reduces to
ax+ by+ cz+ e = 0, which means that the hyperplane will inter-
sect with the volume at exact the same location for all the time
steps. This type of hyperslice will create a volume that contains 2D
spatial planes for a fixed position, for every time step. If we visual-
ize a single hyperslice, it will create the effect of several 2D planes
stacked along a time axis as seen in Figure 3(a).
When hyperprojecting along the normal direction (a,b,c,0),

since the time increment is zero, each voxel of the hyperslice will
accumulate subsamples along the spatial vector (a,b,c). The re-
sulting hyperprojection of the 4D field a volume consisting t slices,
where each slice Sτ is a parallel projected volume rendered image
along the viewing direction (a,b,c) for the volume at time step τ .
The net effect is equal to stacking all the images from rendering a
time-varying sequence at one view angle, (a,b,c), for all time steps
into a volume. When viewing these hyperprojection volumes, we
can observe time evolution along a particular viewing vector, that
way the user can observe the change in a viewing profile. One other
use is to pass a 2D cutting plane that is perpendicular to the time
axis in the image hyperplane. This would give users the ability to
animate through time from a particular view by moving the cutting
plane back and forward through time.
(2) d ̸= 0, a = b = c = 0. In this case, the hyperplane becomes

dt + e = 0, or t = −e/d. Visualizing the hyperslice of this form
is equivalent to visualizing the time-varying sequence at the time
step −e/d. Without loss of generality, we assume −e/d is a pos-
itive number. When hyperprojecting along the normal direction
(0,0,0,1), this is equivalent to casting a ray from each voxel in
the image hyperplane into the time direction. Every voxel in the
final volume after projection represents a fixed location in the orig-
inal 3D data space, but the integration of that position over time.
Conceptually, the result is taking several volumes over time and
combining them into one volume. The original spatial depth is pre-
served, so that when the volume is rendered using 3D visualization
techniques, voxels farther from the eye are occluded by ones that
are closer. We have found that projecting the 4D space in this way
is particularly useful for understanding the space and time behavior



(a) (b)

Figure 3: The vortex data set with hyperplane equation set such
that the corresponding rendered hyperslice in (a) shows a 2D data
slice in spatial domain changing in time. Color assignment is based
on time, with blue being the first and red the last time step. A
rendered hyperslice of the concentrate data set (b) shows the data
slices evolving with space and time. By setting the normal of the
hyperplane orthogonal the movement of the data in 4D space, the
growth of the acid component is captured.

of time-varying data. More discussion and interpretation of project-
ing these hyperplanes will be given in the next section.
(3) d ̸= 0, a ∨ b ∨ c ̸= 0. If d ̸= 0 and one of the other hy-

perplane normal components is not zero, then space is “shifted” by
time. Given the previous two hyperplane families, the oblique hy-
perplane is the least useful and least intuitive out of the three fami-
lies. Projection of these hyperplanes proves to be hard to interpret
as well. In case (1), the hyperslice is the accumulation of a fixed
2D spatial slice of every time step. In case (2), the hyperslice is the
volume at a particular time step. For this case, the hyperplane or
volume conceptually created by the story presented to the user has
the 2D slicing plane moving in space over time. These hyperplanes
are the most difficult to understand and interpret, because space is
skewed by time in the hyperplane.
This type of hyperplane can be used to track features in the time-

varying data. If a feature located in a 2D plane that moves over
time, which can be matched approximately orthogonal to the nor-
mal direction of the slicing hyperplane, then we can track the fea-
ture in the hyperslice. Figure 3(b) shows such an example. In the
concentrate data set, where a planar feature moves along a direc-
tion in spatial domain, the user sets the coefficients (a,b,c) of the
hyperplane accordingly to slice this feature spatially. By adjusting
the coefficient d in the hyperplane equation, the spatial offset of the
2D slices for every time step, we can capture the traces of the data
feature.
When we perform 4D projection using this type of hyperplane,

we are integrating subsamples at different spaces and times into a
final voxel in the resulting hyperprojection volume. Thus, a voxel
in the final volume does not represent fixed time step or a fixed
position in space, like the previous two cases, respectively. This
distortion of space and time makes the volume very difficult to un-
derstand, although we have applied this to the track movement of
features, like the above example with the hyperslice. Further dis-
cussion on how we can use this type of projection will be given in
the additive integration method in the next section.

4.2 Integration Operators and Transfer Functions

In our 4D projection method, an integration step is needed to com-
bine the information from subsamples in sequence of hyperslices
to derive the final voxel color in the image hyperplane. Meth-
ods used in regular 3D volume rendering are typically either op-
tically derived or based upon data extraction, such as the mini-
mum/maximum intensity projection method. Since there is not a
notion of optically viewing in 4D space, we look towards using in-

(a) (b)

Figure 4: Using alpha composition with the hyperprojection normal
of (0,0,0,1), where we project through time. The interval volume
starts at blue, moves over time to green, and eventually ends at red.
(a) uses the vortex data set, while (b) uses the shockwave data set.

tegration operators as a form of data extraction. They will provide
summary information at the voxel position indicating spatial and
temporal characteristics of the data set. In the following, we present
several integration operators and their associated transfer functions.
The design of the transfer functions is closely tied with the type of
integration operators that we utilize. There is an expectation of
what type of data that we are searching for and how to summarize
that information. The transfer function decides how to code the in-
dividual pieces of data, and the integration operator decides how to
combine it into a meaningful summary voxel. We note that not all
integration operators are meaningful to all of the hyperplane fam-
ilies. Only certain subsets of hyperplanes make sense when using
particular integration operators to project the data.

4.2.1 Alpha Composition

Like 3D volume applications, we can use alpha composition in 4D
hyperprojection to emphasize a particular range of data values and
time steps. The transfer function is designed so that more impor-
tant values will occlude less important values, via the alpha chan-
nel. Values with the highest opacity will be the most dominant in
the image hyperplane. The output color channel from the transfer
function is used to distinguish among different values the user is
searching for.
For example, we have created an alpha compositing transfer

function for the hyperplane families of t = −e/d. There are two
inputs to the transfer function, the scalar value of a sample and the
time ordinal value of the sample. The alpha is determined both by
the data value and the time ordinal, by having two alpha transfer
functions and modulating the results together for the final subsam-
ple alpha. In this way the user is able to specify an interval volume
they wish to view, and the range of time steps that are of interest. In
our examples, Figure 4, the color transfer function outputs colors
based on the time ordinal of a subsample, where blue is the oldest
time step, red is the latest, and green is median time. We color by
time, so that when we project and several time steps are composited
together in a single image hyperplane, we are able to distinguish
what points in space are contributed by a particular time step. We
have found this useful for determining the space-time boundary of
interval volumes, and seeing how values move in space over time.
In both images, the interval volume moves over time, starting at
blue, moving to green, and eventually ending at red.
When we use the hyperplane families that utilize d = 0, we

project along a vector that samples in space, but not time. For ex-
ample, the user could specify a hyperplane equation such that the
projection vector is (0,0,1,0). The final image volume would re-
sult in a series of time evolving images of the data rendered looking
down the z axis, using alpha compositing and parallel projection.
These 2D images are stacked along an axis which translates to the
time axis of the image. Figure 5 shows examples of these, using the



(a) (b)

Figure 5: Using alpha composition, but with the hyperprojection
normal of (0,0,1,0). The final image volume is the same as render-
ing several time steps with a parallel projection looking down the z
axis and stacking the images along a t axis. (a) shows when each
time step is colored by time. (b) is (a) rotated to show the stacking
of the images along the t axis.

vortex data set again. In the figure, we color each slice by time in
order to distinguish each slice from the other slices. If we were to
render each time step using traditional raycasting methods, looking
down the z axis, using parallel projection, and storing each image
in one volume, we would get the same result. By passing a cutting
plane perpendicular to the axis which corresponds to time, we can
quickly generate an animation looking down the z axis.

4.2.2 First Hit

We also use first hit integration operator in our 4D projection, where
the 4D sampling ray will stop at the first encountered subsample
that is not completely transparent. When using first hit method, we
can distinctly detect the first instance of a feature along the pro-
jection vector and additionally can allow the user to view interior
features of the hyperprojection volume more easily. This is because
first hit will collect the first subsample in space and time as the sam-
ple for the hyperprojection. If we had used alpha composition, and
used low opacities, voxels in the hyperprojection volume may be
opaque because of the accumulation of alpha over the projection
vector, and a combination of colors from several subsamples.
When using first hit in conjunction with the hyperprojection of

t = −e/d, it allows us to see the space-time boundary of an inter-
val volume showing the first time step that contains the values the
user is interested in. It also allows the user to view interior fea-
tures through foreground elements when several time steps overlap
in one image frame, as long as translucent alpha values are spec-
ified. An example is shown in Figure 6(a) using the vortex data
set. A similar coloring scheme used in alpha composition is used
here for time steps, and a low opacity value is specified for each
time step. The image shows the first time step that contains the user
specified values. We can rotate the image volume and observe inter-
nal features through voxels that are close to the eye. If we had used
alpha composition like Figure 4(a), the subsamples over time that
overlapped in space would have blended together, and created final
voxels with a high opacity . We would not be able to see through
them spatially nor be able to distinguish the first instance because
of color combination.
If we have a hyperprojection of hyperplanes of d = 0, we have

several images rendered using first hit parallel projection looking
down some spatial axis, where the images are stacked along a t axis
in the final image volume. Figure 6(b) shows the jet data set using
the first hit method with a hyperprojection normal of (0,0,1,0). We
have colored the samples by time, so that each time step can be seen
in correlation with the other time steps. With a low opacity set for a
subsample, we are able to see each layer through the layers that are
closer to the eye.

(a) (b)

Figure 6: First hit integration method where (a) uses the vortex data
set and a hyperprojection normal of (0,0,0,1), so that we can see
distinctly see the first time step that contains the interval volume.
With a low opacity for each voxel, we can see through cells. (b)
uses the jet data set and a hyperprojection normal of (0,0,1,0),
which is similar to having several time steps with first hit rendering
looking down the z axis, stacked along a t axis.

(a) (b)

Figure 7: The delta wing and jet data set, shown in (a) and (b) re-
spectively, using additive integration and the hyperprojection nor-
mal of (0,0,0,1). Individual time steps are colored by a linear ramp
from blue to green to red. White color indicates that the interval vol-
ume occupies that region in space over all time steps. Other colors
indicate that fewer time steps occupy that region in space.

4.2.3 Additive

The additive projection method is an unweighted summation of
color and alpha channels of the subsamples. We do not use a com-
positing operator, like what is used in alpha composition. After
summation, we normalize all voxel channels by the maximum chan-
nel value, to account for the maximum displayable hardware color
channel value. With the additive integration operator and an appro-
priate transfer function, we can show the user where two different
subsample values contribute to the projection voxel. The method
of showing this feature is by designing transfer function such that
when two different valued subsamples are added together, it gener-
ates a third unique color value different from normal transfer func-
tion output.
When using additive method in conjunction with the hyperplane

family of t =−e/d, we can show how features in several time steps
overlap in space. When we color subsamples by time ordinal using
a linear red, green and blue transitioning color ramp, if subsam-
ples from all time periods occupy the same region in space, the
final voxel color will be white. This is because a voxel position in
the image hyperplane corresponds to a single point in space as it
evolves over time. We will get other shades of overlapping occur-
ring too, such as yellow, magenta and cyan, in addition to the three
primary colors. Figure 7 shows the delta wing and the jet data set
using additive integration. In both, the white regions show where
the interval volume overlaps in space for all time steps, while other
colors indicate that fewer time steps occupy that region in space in
the time sequence.



(a) (b) (c)

Figure 8: A sphere moving over time to the right. (a) The sphere
integrated by alpha compositing using a hyperprojection normal of
(0,0,0,1). (b) Switching to additive, we can see how the sphere
overlaps in time and space. (c) Using a hyperprojection normal
of (1,0,0,1) and additive again. Since we see a white sphere, we
know that the sphere is moving in that space-time vector, because
the 4D projection ray sampled in the same direction along which
the sphere is in 4D space.

Additive integration allows us to project the hyperplanes of
d ̸= 0,a∨ b∨ c ̸= 0. If we imagine the hyperprojection normal as
the direction of a camera moving over time, translated to a 4D space
vector, then the hyperslices taken would be what the “viewer” is
seeing in a volumetric region relative to its movement. Data values
in space that have the same movement in space relative to the cam-
era should occupy the same position in every hyperslice, because
their positions do not change in relation to the camera over time. If
we were to composite these hyperslice images together and used ad-
ditive integration, we can detect these overlaps, which corresponds
to a form of feature tracking based on the hyperplane projection.
An example of this can be seen in Figure 8, where we have a sphere
moving left to right over time.

4.2.4 Minimum/Maximum Intensity

We can adopt the minimum/maximum intensity projection used in
3D raycasting for our 4D volume projection. When we integrate
the hyperslices together, we choose the sample that has the most
extreme value along the hyperprojection ray as input to the transfer
function.
When working with the hyperprojection of t = −e/d, it allows

the viewer to see bimodal change over time within a time evolv-
ing data set. For instance, when the users use a transfer function
that colors subsamples by time ordinal, they are able to see which
time step generated the most extreme value at a point in space. This
would show the change in value, whether the value was rising or
falling over time. Examples using this technique can be seen in
Figure 9, with the delta wing and vortex data set using maximum
intensity. We color by time, like in previous examples. For exam-
ple, the blue areas in the two images indicate that the maximum
value occurred at the earliest time and then the value fell over time.
The red regions indicate the opposite case, where the value was ris-
ing over time, and the green regions show that the value first rose,
and then fell over the time sequence.

4.2.5 Average

In addition to operators that do color compositing or select one sub-
sample out of many for the transfer function, we can look at oper-
ators that analyze the trend along the projection ray. The average
operator averages the subsamples along the projection ray and pro-
vides the result to the transfer function.
When used with the hyperprojection of t = −e/d, the image hy-

perplane is the average trend of a position in space over time. The
vortex data set is shown as an example of the average operator in
Figure 10(a), with the foreground cropped from it. The transfer
function used in this example maps the entire data range to a linear

(a) (b)

Figure 9: The delta wing and vortex data set, shown in (a) and (b)
respectively, using maximum intensity integration and the hyper-
projection normal of (0,0,0,1). Blue indicates that the value fell
over time, red shows that the value rose over time, and green shows
that the value rose and then fell in the time sequence.

ramp of blue, representing small values, to green, to red, represent-
ing large values. Hyperprojecting case (2) of hyperplane families
would show the average value over a spatial vector, where a 2D
slice in the final volume is a particular time step.

4.2.6 Deviation

If the user specifies a data value, the deviation operator would give
a visual representation to the user on how far values differ from
the user specified value along the projection ray. The deviation test
could use any kind of deviation operators, and in our example, the
standard deviation is used. The operation of the deviation opera-
tor is similar to the average operator. As the projection ray collects
subsamples, these are used as inputs to a deviation test. In our de-
viation operator, every subsample is input into a standard deviation
test from a user supplied value. The transfer function is a mapping
from the computed deviation value along the projection ray to color
and opacity.
When the deviation operator is used in conjunction with the hy-

perprojection of t = −e/d, the user is shown how a point in space
deviates from the user supplied value over time. An example of
the deviation operator used with the jet data set can be seen in Fig-
ure 10(b). In this example, when the standard deviation along the
projection ray is small, the transfer function returns red, which lin-
early ramped to white for larger deviation values. A maximum up-
per bound for deviation values is cut off, which results in transpar-
ent regions in the image hyperplane. If we use case (2) hyperplane
family for projection, the user can see how each time step deviates
from a given value over a spatial vector.

4.2.7 Integration Operator Summary

Using our hyperprojection algorithm, users are able to see features
that might not normally be visualized with traditional volume ren-
dering techniques. The key benefits that are derived from this vi-
sualization is a snapshot of a time varying sequence presented in a
single volume. It really depends on the type of integration operator
and the projection normal that the users choose for their visualiza-
tion on what sort of information is presented to them. The previous
sections contained the different types of projection, and here we
will summary the different integration operators we have presented
and the information obtained from them.
The alpha composition operator is the most basic operator for

projection. It allows the user to choose what values of interest and
time steps they wish to visualize and are presented with those. First
hit operator removes the blending aspect from the alpha compo-
sition operator and the user is able to see the first instance of a
feature distinctly along the projection vector, rather than blending
several space-time voxels together. It also gives the capability of
translucent hyperprojection volumes, by specifying a low opacity



(a) (b)

Figure 10: (a) shows the vortex data set using the average operator
and a hyperprojection normal of (0,0,0,1), from a cropped portion.
Subsamples are averaged along the projection ray and the result
is the input value for the transfer function. (b) shows the jet data
set using the deviation operator and a hyperprojection normal of
(0,0,0,1). Subsamples are used in a standard deviation test from a
user supplied value. The standard deviation result is used as input
for the transfer function where red shows small deviation and white
shows large deviation.

for subsamples in the transfer function. The additive operator al-
lows the user to see overlap in time and space. When projecting
through the time axis with additive integration, the user can see
how values overlap in space over time. If we use an arbitrary pro-
jection through 4D space, we can use the additive method to follow
a feature. Minimum/maximum intensity operator allows the user to
see the most extreme value or the time step that contained the most
extreme value over the projection vector. This allows the user to de-
tect interest areas and bimodal value change. Extending the idea of
minimum/maximum intensity over the projection vector, we can do
similar numerical analyses with an average operator and a deviation
operator. The user is able to project along a direction and detect the
average value or the deviation of a value. Many such analyses along
the projection vector could be created, the visualization possibilities
are limitless.

5 Implementation Details

The software system for implementing our direct rendering method
of 4D space can be separated into two discrete methods, by 4D
raycasting or by hyperslice-based projection. The former can be
done entirely in software to generate 4D projection, though we use
a view-aligned hardware rendering method to rasterize the image
hyperplane. The second method can be achieved by a hardware
slicing and software projection or a hardware slicing and projection.

5.1 Slicing Implementation

The hyperslicing implementation is straightforward to accomplish
in software. Given a camera position, a look direction, an up,
and over vector in 4D space, we can set up an orthogonal 3D co-
ordinate system which defines all the points on our hyperplane.
The look direction becomes the hyperplane normal. To gener-
ate the other two coordinate axes for the hyperplane, the cross
product in four dimensions [Blinn 2003] requires three vectors to
produce a vector orthogonal to the other three. By applying the
cross product three times, i.e. xaxis = up× over× look,yaxis =
xaxis× up× look,zaxis = zaxis× yaxis× look, we construct our
hyperplane coordinate system. Using quad-linear interpolation, we
can resample the 4D points to lie within our hyperplane by pro-
gressing along the 3D hyperplane coordinate axes in 4D space.
We also provide a method for hyperslicing in hardware. Let

the dimension of the original 4D space data stored in xyzt fash-

(a) (b)

Figure 11: Visualizing a hyperslice from the vortex data set. When
zoomed in, the hyperslice with incorrect sampling in (a) loses de-
tailed information compared with the hyperslice with correct sam-
pling in (b).

ion be (xdim,ydim,zdim, tdim), where the time steps are volumes
Vol0,Vol1, . . . ,Voltdim−1. Getting a 2D slice out of a 3D volume
can be implemented using 3D texture hardware in a manner sim-
ilar to view-aligned hardware volume rendering: we need to load
the data values of each volume Volτ (0 ≤ τ < tdim) into memory
as a 3D texture object and update slicing plane if necessary when
rendering the slice. In order to guarantee that the final hyperslice
would not be distorted, parallel projection instead of perspective
projection is used and the width and height of each 2D image slice
is set to be the longest diagonal of the original 3D volume with
length =

√
xdim2+ ydim2+ zdim2. In our case, it is desirable to

set the viewing direction to be the same as the slicing direction
(a,b,c) so that 2D image slices will be aligned automatically in
the hyperslice. As a 2D image slice is rendered, its content is read
out from frame buffer and stored into the corresponding segment of
the hyperslice. The frame buffer is cleared before we render each
slice.
An issue that needs to be addressed is the sampling rate along

t dimension. If d/
√
a2+b2+ c2 > 1, then in order to get suffi-

cient samples from the data, we need to insert one or multiple in-
termediate slices between every two slices, Sτ and Sτ+1, where τ is
the current time step and 0 ≤ τ < tdim− 1. Using OpenGL multi-
texturing and NV_register_combiners extensions, this can be
done by keeping the consecutive two volumes Volτ and Volτ+1 in
texture memory simultaneously and interpolating the intermediate
slices. An efficient way to perform this is to swap out only one
volume at a time and apply two blending equations alternatively.
Figure 11 shows an example of the rendering of two hyperslices
with and without correct sampling.
The advantage of this approach is that it can be completely done

using graphics hardware and it is quicker than the quad-linear soft-
ware interpolation approach. However, the sides of each 2D image
slice could be larger than length due to the power-of-two restric-
tion imposed by OpenGL implementation. This may adversely in-
crease the size of the final hyperslice and create much empty space.
Observe that when we increase the size of frame buffer in order
to satisfy the constraint, the actual data will not really exceed the
boundary of the theoretical one because we always make the view-
ing direction to be the same as the slicing direction (a,b,c). Thus a
convenient way to keep the size of hyperslice from increasing is to
read only partial of the image slice with sides delimited by length
each time when we read the image from frame buffer.

5.2 Projection Implementation

A software implementation for doing 4D raycasting is a straight-
forward extension of generating a hyperplane in 4D space. The
previous section explained how to sample the hyperplane by creat-
ing a 3D coordinate system and sampling the 4D space. Given the



definition of an initial view volume from our hyperplane, we per-
form 4D raycasting by casting a ray from each voxel in the volume
through 4D space along the hyperplane normal. We integrate by
using our integration functions defined in the previous section. The
volume is visualized by any standard volume visualization method.
Alternatively, we can use the hardware hyperslicer to generate

several intermediate hyperslices that will be composed together to
generate the final image hyperplane. Projection of the volumes is
easy if hyperslices are correctly registered such that the same array
position in all slices corresponds to the voxels along the 4D pro-
jection ray. To project all the slices to the image hyperplane, we
compose all samples at the same position in every 3D array to gen-
erate the projection voxel. We integrate by iterating through every
hyperslice at the same position in space, and collecting subsamples.
Again, we can also use a hardware method to project the hyperplane
slices into the image hyperplane. Using correctly registered 3D hy-
perslices, for every hyperslice, we project 2D planes with the same
position in every hyperslice into frame buffer. The frame buffer is
copied and placed into the final image volume at the position that
the 2D slices were taken from the hyperslices. Doing this would
be equivalent to performing the projection for all voxels in one 2D
plane. After we have performed our 4D projection to a 3D volume,
any volume visualization technique can be used to view the hyper-
projection. It is non-trivial to implement some of the integration
operators in graphics hardware and still some other operators can
not be implemented at all in current graphics hardware. Alpha com-
position and additive operators can be done with dependent texture
lookup for the transfer functions, first hit and minimum/maximum
intensity might be accomplished with a multi-pass algorithm using
the stencil or z buffers. The other integration operators may be able
to use more recent programmable pixel shader graphics hardware,
but it is unlikely to provide division and square root operations,
which are needed in the average and deviation operators.

6 Conclusion and Future Work

We have presented a new, flexible method for viewing time-varying
volumetric data. The time-varying data are considered to be a 4D
data field, rather than separate volumes enumerated by time. In
this manner, we can perform high dimensional direct rendering of
the data. Our method generates an image volume of 4D space by
projecting the data to three dimensions. Despite the difficulty to vi-
sualize 4D space, we can help the user better visualize a hyperslice
by showing it as a series of 2D slices taken from every time step.
The hyperslices are then projected along the hyperplane normal to
generate an image hyperplane. The hyperplane equations and their
projections can be divided into several categories with different in-
terpretations. We utilize different integration operators and transfer
functions and are able to present spatio-temporal features to the user
in an intuitive manner. We believe that these methods are useful for
exploring time-varying data in an informative way.
Future work includes investigating the tradeoff of memory and

speed between software 4D raycasting and hardware slicing. In
hardware slicing, several intermediate 3D volumes are generated
to composite together. It may demonstrate that a 4D software
raycaster is in fact faster than a hardware slicing and projection
method, due to graphics hardware RAM limitations and bus speeds.
Another interesting aspect to explore would be seeing if specifying
an arbitrary projection path would generate informative images. For
instance, the user could specify a spline in 4D space, which would
be the projection direction. By projecting along this arbitrary path,
we may be able to follow features in space and time for tracking.
Finally, we need to continue the design of interactive interface for
this high dimensional direct rendering of time-varying volumetric
data. More GUI tools that allow users to probe the data and get
more than visual feedback, and even to specify their own equations

for the integration operators, would be immensely useful.

Acknowledgements

This work was supported in part by NSF grant ACR-0118915,
NASA grant NCC-1261, Ameritech Faculty Fellowship, and Ohio
State Seed Grant. We thank the anonymous reviewers for their help-
ful comments.

References

BAJAJ, C., PASCUCI, C., RABBIOLO, G., AND SCHIKORE, D. 1998.
Hypervolume Visualization: A Challenge in Simplicity. In Proceedings
of 1998 Symposium on Volume Visualization, ACM Press, 95–102.

BANCHOFF, T. 1990. Beyond the Third Dimension: Geometry, Computer
Graphics, and Higher Dimensions. Scientific American Library.

BANK, D., AND SINGER, B. 1995. A Predictor-Corrector Technique for
Visualizing Unsteady Flow. IEEE Transactions on Visualization and
Computer Graphics 1, 2, 151–163.

BLINN, J. 2003. Lines in Space Part 1: The 4D Cross Product. IEEE
Computer Graphics and Applications 23, 2, 84–91.

COHEN, M. F., 2000. Visualization of Everyday Things
(http://www.research.microsoft.com/~cohen/Vis2000.pdf).

HANSON, A., AND CROSS, R. 1993. Interactive Visualization Methods
for Four Dimensions. In Proceedings of IEEE Visualization ’93, IEEE
Computer Society Press, 196–203.

HANSON, A., AND HENG, P. 1992. Four-Dimensional Views of 3D Scalar
Fields. In Proceedings of IEEE Visualization ’92, IEEE Computer Soci-
ety Press, 84–91.

HANSON, A., AND HENG, P. 1992. Illuminating the Fourth Dimension.
IEEE Computer Graphics and Applications 12, 4, 54–62.

JANKUN-KELLY, T., AND MA, K.-L. 2001. A Study of Transfer Function
Generation for Time-varying Volume Rendering. In Proceedings of 2001
International Workshop on Volume Graphics, 51–65.

KINDLMANN, G., AND DURKIN, J. 1998. Semi-Automatic Generation
of Transfer Functions for Direct Volume Rendering. In Proceedings of
1998 IEEE Symposium on Volume Visualization, ACM Press, 79–86.

KNISS, J., KINDLMANN, G., AND HANSEN, C. 2001. Interactive Vol-
ume Rendering Using Multi-Dimensional Transfer Functions and Direct
Manipulation Widgets. In Proceedings of IEEE Visualization ’01, IEEE
Computer Society Press, 255–262.

KNISS, J., KINDLMANN, G., AND HANSEN, C. 2002. Multidimensional
Transfer Functions for Interactive Volume Rendering. IEEE Transac-
tions on Visualization and Computer Graphics 8, 3, 270–285.

MICROSOFT RESEARCH GRAPHICS GROUP, 2000. VideoCube
(http://research.microsoft.com/downloads/VideoCube/VideoCube.asp).

REINDERS, F., POST, F., AND SPOELDER, H. 2001. Visualization of
Time-Dependent Data using Feature Tracking and Event Detection. The
Visual Computer 17, 1, 55–71.

SAMTANEY, R., SILVER, D., ZABUSKY, N., AND CAO, J. 1994. Visu-
alizing Features and Tracking Their Revolution. IEEE Computer 27, 7,
20–27.

SILVER, D., ANDWANG, X. 1997. Tracking and Visualizing Turbulent 3D
Features. IEEE Transactions on Visualization and Computer Graphics
3, 2, 129–141.

VAN WIJK, J., AND VAN LIERE, R. 1993. Hyperslice. In Proceedings of
IEEE Visualization ’93, IEEE Computer Society Press, 119–125.

WOODRING, J., AND SHEN, H.-W. 2003. Chronovolumes: A Direct Ren-
dering Technique for Visualization Time-Varying Data. In Proceedings
of 2003 International Workshop on Volume Graphics.


